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INTRODUCTION

Point kinetics is a classic model to approximate tran-
sient behavior in nuclear systems using static analysis. Tra-
ditionally, the approximation is based upon a k or mul-
tiplication eigenvalue form of the neutron transport equa-
tion. Alternative, but less well known, eigenvalue formu-
lations of the transport equation are also possible[1–4]. In
this study, the collision, or c-eigenvalue, and leakage, or l-
eigenvalue, forms of the transport equation are used to ob-
tain alternate point kinetics models. The k, c and l eigen-
value equations are identical at criticality, but differ from
each other for off critical systems.

Using different formulations of the point kinetics
model for non-critical systems leads to different estimates
of the inverse prompt period α, which are different than
the true α obtained from a time-dependent calculation or
measurement. The suitability of using each of α’s from
different point kinetics models as an approximation for the
true inverse prompt period is studied. This compares them
with calculated time-dependent prompt α for a few multi-
group systems with representative cross sections. The re-
sult shows for a couple test simple cases of fast systems
with low-Z reflectors, the prompt α obtained from c eigen-
value kinetics may be more representative than the k eigen-
value. It appears the l eigenvalue kinetics does not agree
with time-dependent prompt α and is most likely of little
practical use.

THEORY

The k-eigenvalue equation is

(L+ T − S)ψk =
1
k
Fψk. (1)

Here L is the operator for streaming, T is the total inter-
action operator, S is the integral scattering operator, and F
is the integral total fission operator. This equation forms
a balance relation that finds the correction factor or eigen-
value k that balances the left- and right-hand sides of the
equation along with the corresponding eigenfunction ψk.

There is nothing sacred about applying the correction
factor to the multiplication term. Alternatively, a factor c
could be applied to both the scattering and fission terms to
obtain

(L+ T )ψc =
1
c

(S + F )ψc. (2)

The factor c increases the multiplicity of all collisions, as
opposed to just fission, to balance the equation. This form
has been studied before, primarily by mathematicians try-
ing to understand the properties of the transport equation.
As an aside, unlike the k or l eigenvalues, c, like α, exists
even in the absence of fissionable material.

Another, rarely seen, form of the transport equation is

Lψl =
1
l

(S + F − T )ψl (3)

that balances the streaming operator with the other terms.
The leakage eigenvalue l can be thought of as a factor to
globally adjust the atomic density to achieve criticality. In-
terestingly, there are many cases where no density increase
may achieve criticality, and in these cases the l eigenvalue
does not exist.

The equations are all identical at criticality (k = c =
l = 1) and therefore have the same fundamental eigenfunc-
tions; however, when the system is not critical the eigenval-
ues and eigenfunctions differ.

None of these equations involve time dependence,
which, in general, must be obtained by solving the full,
time-dependent neutron transport equation,

1
v

∂ψ

∂t
= (S +M − L− T )ψ +

∑
i

λiCi(t) +Q, (4)

the calculation of which may be rather difficult. Here the
prompt fission operator M is separated from the delayed
neutron precursors Ci explicity. The instantaneous inverse
period is defined as the logarithmic time derivative of the
neutron population

α(t) =
1

N(t)
dN(t)
dt

. (5)

Alternatively, often asymptotic behavior of the prompt neu-
trons is only of interest, which may be obtained from the
α-eigenvalue form of the transport equation:

(S +M − L− T )ψα =
α

v
ψα. (6)

The α eigenvalue can be thought of as an additive inser-
tion of a 1/v absorber for a supercritical system or source
for the subcritical case to balance the equation. This makes
sense as in the former case, the slower neutrons cannot keep
up with the exponentially rising neutron population, and in
the latter, it is those slower neutrons that are driving the



exponentially falling population. For late times and in the
absence of sources or delayed neutrons, the α eigenvalue
and the inverse period (and flux shape) are identical. The
α-eigenvalue form of the transport equation is usually eas-
ier to solve for supercritical systems; however, the stability
of numeric methods for subcritical systems makes the α
eigenvalue difficult to obtain as well. For this study, the
direct, time-dependent approach is used.

These calculational difficulties may be avoided if
somehow the static eigenvalue models may be connected to
time dependence. This may be done with the point kinetics
model. To obtain this, the time-dependent neutron flux is
assumed to be in the fundamental mode and separable in
time and the rest of phase space,

ψ(r, Ω̂, E, t) = n(t)ϕ(r, Ω̂, E). (7)

From here, a static eigenvalue form of the adjoint transport
equation is employed with eigenfunction ψ†

x, where x = k,
c, or l. The separable time-dependent transport equation
is multiplied by the adjoint function, the adjoint equation
is multiplied by the shape function ϕ, both are integrated
over all space and subtracted. After some manipulation,
the point kinetics equation is obtained

dn

dt
=

(
ρx − βx

Λx

)
n(t) +

∑
i

λici(t) + q. (8)

The precursor equations are not written here, but must be
solved as well. The terms ρx, βx, and Λx are called the
reactivity, effective delayed neutron fraction, and effective
generation time respectively. The exact form of these de-
pend upon the assumption of static eigenfunction chosen,
hence the x subscript. The point kinetics inverse prompt
period αx is given by,

αx =
ρx − βx

Λx
, (9)

which can be used as an approximation for the true asymp-
totic prompt α from the time-dependent analysis.

The reactivity is defined as

ρx = 1− 1
x
. (10)

The βx and Λx are

βx =

〈
ψ†

x, (F −M)ϕ
〉〈

ψ†
k, Axϕ

〉 . (11)

Λx =

〈
ψ†

x,
1
vϕ

〉〈
ψ†

k, Axϕ
〉 . (12)

Here Ax is a generic operator, which is F for the k-
eigenvalue kinetics, S + F for the c-eigenvalue kinetics,
and S + F − T for the l-eigenvalue kinetics.

The shape function ϕ is for the time-dependent trans-
port equation, and is typically unknown unless the time-
dependent or α problem is solved, which defeats the pur-
pose of employing point kinetics. Often the shape function
is approximated by the static forward eigenfunction being
used, typically ψk. The most logical choice is to use the
forward eigenfunction consistent with the adjoint eigen-
function selected. Strictly speaking, this is not necessary
and any representative function can be used, and therefore
different forward and adjoint eigenfunctions may be mixed.
For this work, only the consistently chosen forward and ad-
joint functions are used.

Different choices of eigenfunction lead to different
values and physical significance of the kinetics parameters;
however, at criticality (and only at criticality), the combi-
nations of terms as kinetics αx are identical and equal to
the inverse prompt period α. This also implies that the
transition from delayed to prompt supercritical is predicted
differently depending on the point kinetics model chosen.
Therefore, these point kinetics models are only useful sur-
rogates for prompt behavior inasmuch as the kinetics αx

adequately approximates the true α.

RESULTS

For this initial study, 1-D slab geometry and multi-
group cross sections are used. The systems studied were
a bare metal system and a metal system with a low-Z re-
flector. Methods for solving the forward and adjoint equa-
tions were implemented into a research discrete ordinates
(SN ) code. A research Monte Carlo (MC) code was cre-
ated to solve the forward and time-dependent transport
problems—time dependent SN was developed as well, but
because very small time steps and negative flux fix-ups are
required, MC proved to be more robust and efficient in this
case. To summarize, the kinetics parameters were obtained
via SN (S64 Gauss-Legendre quadrature with fine spatial
mesh), and the prompt α was obtained with MC by a least-
squares fit to the asymptotically changing population; time
cutoffs were used in the MC to control the neutron popula-
tion for the supercritical cases.

As a note of verification, the SN and MC forward
eigenvalues from the two methods match, and the k eigen-
value case was benchmarked with MCNP6.1 in multigroup
mode[5], providing confidence the equations are being
solved correctly by both methods. As expected, the k, c, l,
and time-dependent results are identical for a critical con-
figuration. The forward and adjoint SN eigenvalue results
for k, c, and l calculations are also identical.

Bare, 2-Group Slab

Bare slabs with varying thicknesses a form the first
test case. The slab cross sections are given in Table I, and



Table I. 2-group core cross sections.

g σc σf ν χ σsg1 σsg2

1 1.5 1.0 2.8 1.0 0.98 0.02
2 20.0 120.0 2.5 0.0 0.00 20.0

the atomic density is 0.05 atoms per barn-cm. The speeds
of the two groups are v1 = 1.0 and v2 = 0.1 in arbitrary
units. For this case, no delayed neutrons were used—the
4-group case to be discussed has them.

The slab thickness a is varied from 15 to 30 cm, with
the critical thickness at about 25.5 cm. Figure 1 shows
the various αx values compared with the true (reference)
prompt α. For the bare case, αk and αc are almost identi-
cal regardless of slab thickness, whereas αl deviates signif-
icantly from the other two away from criticality; of course,
all agree at critical.
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Fig. 1. True α versus kinetics αx for Bare Slab.

Half-Reflected, 2-Group Slab

The second test case is the same core slab of thickness
a with a fixed 25 cm thick low-Z reflector on the right side
of the slab; the left side still has a vacuum boundary condi-
tion. The reflector cross sections are given in Table II, and,
like the core, the atomic density is 0.05 atoms per barn-cm.

Figure 2 gives a comparison of the kinetics αx to the
true (reference) α. Unlike with the bare case, all three αx

are noticably different. Like before the αk and αc are near-

Table II. 2-group reflector cross sections.

g σc σf ν χ σsg1 σsg2

1 0.5 0.0 0.0 0.0 2.25 2.25
2 1.0 0.0 0.0 0.0 0.00 5.0
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Fig. 2. True α versus kinetics αx for Half-Reflected Slab.

est with the αl being the noticeable outlier. In this case,
all three αx underpredict the true inverse prompt period;
however, αc appears to be the most accurate approximation
over the entire range.

The normalized shape functions for the case where
a = 15 cm are given in Fig. 3. This shows also that the
scalar flux estimated by the c-eigenvalue does the best at
matching the flux shape of the α-eigenvalue. In the core it
overpredicts the least, and underpredicts the least in the re-
flector. Next accurate is the scalar flux for k with the scalar
flux for l being in most disagreement.
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Fig. 3. Shape functions of the half-reflected case from dif-
ferent kinetics models.

Fully-Reflected, 4-Group Slab

The next case is reflected on both sides (modeled as
a reflecting boundary condition at x = 0). The reflector
thickness on each side is again 25 cm. The four energy
groups are centered at 1 MeV, 100 keV, 10 eV, and 0.025
eV, so more realistic speeds are used in this case. Core
and reflector cross sections are omitted because of space
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Fig. 4. True α versus kinetics αx for Fully-Reflected Slab.

limitations, but will be published in a full paper. Delayed
neutrons are included with 235U data used for the βi and λi.
To be consistent with point kinetics, only prompt ν is used
to sample the fission multiplicity in the time-dependent MC
calculations.

The core thickness a is varied as with the previous
case. Similar comparisons of αx and the inverse prompt pe-
riod are given in Fig. 4. None of the αx do particularly well
in predicting the inverse prompt period in this case when it
is far from critical. This is because on both sides, the point
kinetics model, being a perturbative approach, does not ad-
equately insert the 1/v absorber or source to account for the
fact that slower or faster neutrons do not significantly im-
pact the transient. Like before, αc is most predictive of the
inverse prompt period and does better than αk near critical;
αl is again a poor estimator of α.

SUMMARY & FUTURE WORK

Alternate versions of the point-kinetics model were
derived based upon the multiplication k, collision c, and
leakage l eigenvalues. Research SN and MC codes were
created to test the ability of these models to predict the
inverse prompt period α obtained from a time-dependent
MC simulation. Three cases with multigroup cross sections
were tested: bare fast core, fast core half-reflected by low-
Z material, and fast core fully-reflected by low-Z mate-
rial. While it would be premature to conclude overly much
based upon a few simplistic test problems using represen-
tative, but non-physical, nuclear data, the results suggest
it may be worth exploring different point kinetics model,
and that there may be advantages to using the c-eigenvalue
kinetics for reflected systems.

The next step is to adapt these eigenvalue calculations
into a continuous-energy MC code. Some of this work
has already been done for the forward case with the c-
eigenvalue[6]; however, new methods will need to be de-

veloped to handle the adjoint weighting needed to calcu-
late the alternate kinetics parameters. These will most
likely be logical extensions of the iterated fission proba-
bility method[7] used to compute the k point kinetics pa-
rameters.

Given the parameters from the different point kinet-
ics models, the inhour equations may be formulated and
solved. Comparisons can then be made between the mod-
els to either time dependent calculations or measurements.
Finally, it may be possible to apply different combinations
of these point kinetics models to multi-region kinetics, par-
ticularly regions with non-fissionable reflectors.
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